试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
若函数y=f(x)对于一切实数x,y,都有f(x+y)=f(x)+f(y),(1)求f(0)并证明y=f(x)是奇函数;(2)若f(1)=3,求f(-3).试题及答案-单选题-云返教育
试题详情
若函数y=f(x)对于一切实数x,y,都有f(x+y)=f(x)+f(y),
(1)求f(0)并证明y=f(x)是奇函数;
(2)若f(1)=3,求f(-3).
试题解答
见解析
证明:(1)令x=y=0,则f(0+0)=f(0)+f(0),
解得f(0)=0;
令y=-x,得f(0)=f(x)+f(-x),即f(-x)=-f(x),
∴y=f(x)是奇函数;
(2)解:∵f(1)=3,f(x+y)=f(x)+f(y),
∴f(3)=f(2+1)=f(2)+f(1)=[f(1)+f(1)]+f(1)=3f(1)=9,
又y=f(x)是奇函数;
∴f(-3)=-f(3)=-9.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1?x2)=f(x1)+f(x2).(1)求f(1)与f(-1)的值;(2)判断函数的奇偶性并证明;(3)若x>1时,f(x)>0,求证f(x)在区间(0,+∞)上是增函数;(4)在(3)的条件下,若f(4)=1,求不等式f(3x+1)≤2的解集.?
已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1.(1)求f(9),f(27)的值.(2)解不等式f(x)-f(x-4)>1.?
(A类)已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log√3(x+a)的图象上.(1)求实数a的值; (2)解不等式f(x)<log√3a;(3)|g(x+2)-2|=2b有两个不等实根时,求b的取值范围.(B类)设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)+f(y)(1)求f(0)的值; (2)求证:f(x)为奇函数;(3)若函数f(x)是R上的增函数,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范围.?
设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(13)=1;(1)求f(1)、f(3)的值.(2)如果f(x+2)+f(x-2)≥-2,求x的取值范围.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®