• 已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.又f(1)=-2.(1)判断函数f(x)的奇偶性;(2)求函数f(x)在区间[-3,3]上的最大值;(3)解关于x的不等式f(ax2)-2f(x)<f(ax)+4.试题及答案-单选题-云返教育

    • 试题详情

      已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.又f(1)=-2.
      (1)判断函数f(x)的奇偶性;
      (2)求函数f(x)在区间[-3,3]上的最大值;
      (3)解关于x的不等式f(ax
      2)-2f(x)<f(ax)+4.

      试题解答


      见解析
      解:(1)取x=y=0,则f(0+0)=2f(0),∴f(0)=0…1′
      取y=-x,则f(x-x)=f(x)+f(-x)∴f(-x)=-f(x)对任意x∈R恒成立∴f(x)为奇函数.…3′
      (2)任取x
      1,x2∈(-∞,+∞)且x1<x2,则x2-x1>0,∴f(x2)+f(-x1)=f(x2-x1)<0,…4′
      ∴f(x
      2)<-f(-x1),
      又f(x)为奇函数∴f(x
      1)>f(x2
      ∴f(x)在(-∞,+∞)上???减函数.∴对任意x∈[-3,3],恒有f(x)≤f(-3)…6′
      而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-2×3=-6,
      ∴f(-3)=-f(3)=6,∴f(x)在[-3,3]上的最大值为6…8′
      (3)∵f(x)为奇函数,∴整理原式得 f(ax
      2)+f(-2x)<f(ax)+f(-2),
      进一步得f(ax
      2-2x)<f(ax-2),
      而f(x)在(-∞,+∞)上是减函数,
      ∴ax
      2-2x>ax-2…10′∴(ax-2)(x-1)>0.
      ∴当a=0时,x∈(-∞,1)
      当a=2时,x∈{x|x≠1且x∈R}
      当a<0时,x∈{x|
      2
      a
      <x<1}
      当0<a<2时,x∈{x|x>
      2
      a
      或x<1}
      当a>2时,x∈{x|x<
      2
      a
      或x>1}…12′
    MBTS ©2010-2016 edu.why8.cn