试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
区间[0,m]在映射f:x→2x+m所得的对应区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m= .(定义区间[a,b]的长度为b-a)试题及答案-单选题-云返教育
试题详情
区间[0,m]在映射f:x→2x+m所得的对应区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m=
.(定义区间[a,b]的长度为b-a)
试题解答
5
解:f(0)=m,f(m)=3m,
由题意可得b-a=3m-m=(m-0 )+5,解得m=5,
故答案为 5.
标签
必修1
人教A版
单选题
高中
数学
Venn图表达集合的关系及运算;并集及其运算;补集及其运算;集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;集合关系中的参数取值问题;集合中元素个数的最值;交、并、补集的混合运算;交集及其运算;空集的定义、性质及运算;全集及其运算;元素与集合关系的判断;子集与真子集;方根与根式及根式的化简运算;分数指数幂;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值;有理数指数幂的运算性质;正整数指数函数;指数函数的单调性的应用;指数函数的单调性与特殊点;指数函数的定义、解析式、定义域和值域;指数函数的实际应用;指数函数的图像变换;指数函数的图像与性质;指数函数综合题;指数型复合函数的性质及应用;二分法的定义;二分法求方程的近似解;根的存在性及根的个数判断;函数的零点;函数的零点与方程根的关系;函数零点的判定定理;函数与方程的综合运用
相关试题
区间[0,m]在映射f:x→2x+m所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m=( )?
已知集合A=[0,4],集合B=[0,2],按照对应法则f能建立从A到B的一个映射是( )?
设集合A到B的映射为f1:x→y=2x+1,集合B到C的映射为f2:y→z=y2-1,则集合C中的元素O在A中的原象是( )?
设集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为( )?
函数f(x)=√3-2x-x2的单调增区间为 .?
函数y=|x2-2x-3|的单调递减区间是 .?
已知函数f(x)=x|x-a|-a (x∈R,a>0),则函数f(x)的单调递增区间为 .?
函数y=√-x2-x+2的单调递增区间为 .?
已知函数f(x)=x+tx(t>0),过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.(1)当t=2时,求函数f(x)的单调递增区间;(2)设|MN|=g(t),试求函数g(t)的表达式;(3)在(2)的条件下,若对任意的正整数n,在区间[2,n+64n]内,总存在m+1个数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.?
设a>0,函数f(x)=x2+a|lnx-1|.(Ⅰ)当a=2时,求函数f(x)的单调增区间;(Ⅱ)若x∈[1,+∞)时,不等式f(x)≥a恒成立,实数a的取值范围.?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®