(2)
解:设 a=(x1,y1),b=(x2,y2),则λ a+(1-λ) b=(λx1+(1-λ)x2,λy1+(1-λ)y2),
对于①,f[λa+(1-λ)b]=λx1+(1-λ)x2+λy1+(1-λ)y2+1=λ(x1+y1)+(1-λ)(x2+y2)+1
而λf( a)+(1-λ)f( b)=λ(x1+y1+1)+(1-λ)(x2+y2+1)═λ(x1+y1)+(1-λ)(x2+y2)+1,
f1满足性质p;
对于②,f[λ a+(1-λ) b]=λx1+(1-λ)x2-λy1-(1-λ)y2=λ(x1-y1)+(1-λ)(x2-y2)
而λf( a)+(1-λ)f( b)=λ(x1-y1)+(1-λ)(x2-y2),f2满足性质P
对于③,f2(λa+(1-λb))=[λx1+(1-λ)x2]2+[λy1+(1-λ)y2],λf2(a)+(1-λ)f2(b)=λ(x12+y1)+(1-λ)(x22+y2)
∴f2(λa+(1-λb))≠λf2(a)+(1-λ)f2(b),∴映射f3不具备性质P.
故答案为:①②