试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
如图:?OBCD中,∠DOB=60°,OD=2,以OD为直径的⊙P经过点B,点N为BC边上任意一点(与点B、C不重合),过N作直线MN⊥x轴,垂足为A,交DC边于M.设OA=t,△OMN的面积为s.(1)求点D的坐标;(2)求s与t之间的函数关系式,并写出自变量t的取值范围;(3)当s为38√3时,直线MN与⊙P是什么位置关系.试题及答案-解答题-云返教育
试题详情
如图:?OBCD中,∠DOB=60°,OD=2,以OD为直径的⊙P经过点B,点N为BC边上任意一点
(与点B、C不重合),过N作直线MN⊥x轴,垂足为A,交DC边于M.设OA=t,△OMN的面积为s.
(1)求点D的坐标;
(2)求s与t之间的函数关系式,并写出自变量t的取值范围;
(3)当s为
3
8
√
3
时,直线MN与⊙P是什么位置关系.
试题解答
见解析
解:如下图所示:连接DB,BP
(1)由于⊙OP过点B,OD是圆的直径,所以∠DBO=90°
在Rt△OBD中,OB=OD×cos∠DOB=2×
1
2
=1;DB=OD×sin∠DOB=2×
√
3
2
=
√
3
所以点D的坐标为:D(1,
√
3
);
(2)由于ODBC是平行四边形,且MN⊥x轴于A
所以AM=BD=
√
3
,∠CBA=∠DOB=60°
在Rt△BAN中,AN=tan∠CBA×BA=
√
3
(t-1)
所以MN=AM-AN=
√
3
(2-t)
即:△OMN的面积为s=
1
2
×MN×OA=
1
2
×
√
3
(2-t)t=
√
3
2
t(2-t)
又∵点N为BC边上与点B、C不重合的任意一点,
∴t的取值范围为:1<t<2;
(3)当s=
√
3
2
t(2-t)=
3
√
3
8
时,又1<t<2,所以t=
3
2
圆心P到MN的距离等于
1
2
(DM+OA)=
1
2
×(
3
2
-1+
3
2
)=1=
1
2
OD
所以此时直线MN与⊙P相切.
标签
九年级下
浙教版
解答题
初学
数学
直线与圆的位置关系
相关试题
如图,在平面直角坐标系中,已知O(0,0),A(4,0),B(4,3)三点.动点P从点O出发,以每秒3个单位的速度,沿△OAB的边OA,AB,BO做匀速运动.动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t(s),当点P运动到点O时,它们都停止运动.当点P在线段OA上运动时,求直线l与以点P为圆心、1为半径的圆相交时t的取值范围.?
已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.(1)求直线AC的解析式;(2)试求出当t为何值时,△OAC与△PAQ相似.?
在直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.(1)如图,当C点在x轴上运动时,若设AC=x,请用x表示线段AD的长.(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时直线EF∥直线BO?这时⊙F和直线BO相切的位置关系如何?请给予说明.(4)G为CD与⊙F的交点,H为直线DF上的一个动点,连接HG、HC,求HG+HC的最小值,并将此最小值用x表示.?
如图,正方形ABCD的边长为5cm,动点P从点C出发,沿折线C-B-A-D向终点D运动,速度为acm/s;动点Q从点B出发,沿对角线BD向终点D运动,速度为√2cm/s.当其中一点到达自己的终点时,另一点也停止运动.当点P、点Q同时从各自的起点运动时,以PQ为直径的⊙O与直线BD的位置关系也随之变化,设运动时间为t(s).(1)写出在运动过程中,⊙O与直线BD所有可能的位置关系 ;(2)在运动过程中,若a=3,求⊙O与直线BD相切时t的值;(3)探究:在整个运动过程中,是否存在正整数a,使得⊙O与直线BD相切两次?若存在,请直接写出符合条件的两个正整数a及相应的t的值;若不存在,请说明理由.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 解直角三角形
1.1 锐角三角函数
互余两角三角函数的关系
锐角三角函数的定义
特殊角的三角函数值
同角三角函数的关系
第2章 直线与圆的位置关系
2.1 直线与圆的位置关系
切割线定理
切线长定理
切线的判定
切线的判定与性质
切线的性质
弦切角定理
直线与圆的位置关系
第3章 投影与三视图
3.1 投影
平行投影
中心投影
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®