试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知f(x)在(-∞,+∞)内是减函数,且a+b≤0,则下列各式正确的是 .(填序号)①f(a)+f(b)≥f(-a)+f(-b); ②f(a)+f(b)≤f(-a)+f(-b);③f(a)+f(b)≤-f(a)-f(b); ④f(a)+f(b)≥-f(a)-f(b).试题及答案-单选题-云返教育
试题详情
已知f(x)在(-∞,+∞)内是减函数,且a+b≤0,则下列各式正确的是
.(填序号)
①f(a)+f(b)≥f(-a)+f(-b); ②f(a)+f(b)≤f(-a)+f(-b);
③f(a)+f(b)≤-f(a)-f(b); ④f(a)+f(b)≥-f(a)-f(b).
试题解答
①
解:∵a+b≤0,∴a≤-b且a≤-b
∵f(x)在(-∞,+∞)内是减函数,
∴由a≤-b得f(a)≥f(-b),…(1)
同理可得f(b)≥f(-a),…(2)
(1)、(2)相加得:f(a)+f(b)≥f(-a)+f(-b),故①正确而②不正确;
因为函数不是奇函数也不是偶函数,故由“f(a)+f(b)≥f(-a)+f(-b)”不能推出“f(a)+f(b)≤-f(a)-f(b)”
或“f(a)+f(b)≥-f(a)-f(b)”成立,所以③④都不正确.
故答案为:①
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;元素与集合关系的判断;子集与真子集
相关试题
若函数f(x)=x+3ax+2在区间(a,+∞)上是增函数,则实数a的取值范围是 .?
已知函数y=f(x)满足f(x)=f(4-x)(x∈R),且f(x)在x>2时为增函数,则f(35),f(65),f(4)按从大到小的顺序排列出来是 .?
若函数y=1+kx在区间(0,+∞)上是减少的,则实数k的取值范围是 .?
已知函数y=f(x),当x>1时,函数单调递减,又f(x)=f(2-x),试比较f(0),f(-2),f(π)的大小顺序 .?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®