• 已知f(x)=x+图象过点( 2,4 ),(1)求f(x)解析式与定义域;(2)判断f(x)奇偶性;(3)已知n≥4,f(x)在[a,a+1]有最小值为n,求正数a范围.试题及答案-单选题-云返教育

    • 试题详情

      已知f(x)=x+图象过点( 2,4 ),
      (1)求f(x)解析式与定义域;
      (2)判断f(x)奇偶性;
      (3)已知n≥4,f(x)在[a,a+1]有最小值为n,求正数a范围.

      试题解答


      见解析
      (1)因为f(x)的图象过点(2,4),
      所以有f(2)=4,即2+
      =4,解得m=4,
      故f(x)=x+
      .定义域为{x|x≠0}.
      (2)∵x≠0,f(x)+f(-x)=(x+
      )+(-x+)=0,
      所以f(-x)=-f(x),
      ∴f(x)奇函数.
      (3)当x>0时,f(x)在(0,2)上递减,在(2,+∞)上递增,f(2)=4,f(1)=f(4)=5.
      作出函数f(x)=x+
      在(0,+∞)上的图象,如下图所示:
      由图象得①当n=4时,有a≤2≤a+1,解得1≤a≤2.
      ②当4<n<5时,
      若1<a+1<2,即0<a<1,f(x)在[a,a+1]上递减,f
      min(x)=f(a+1)=n,解得a=-1.
      若2<a<3,f(x)在[a,a+1]上递增,f
      min(x)=f(a)=a+=n,解得a=
      ③当n≥5时,f(x)在[a,a+1]上递增,f
      min(x)=f(a)=a+=n,解得a=
      综上所述,当当n=4时,1≤a≤2;当4<n<5时,a=
      -1或a=;当n≥5时,a=
    MBTS ©2010-2016 edu.why8.cn