• 已知函数f(x)=x2-1,g(x)=a|x-1|.(1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数a的取值范围;(2)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;(3)求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤).试题及答案-解答题-云返教育

    • 试题详情

      已知函数f(x)=x2-1,g(x)=a|x-1|.
      (1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数a的取值范围;
      (2)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
      (3)求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤).

      试题解答


      见解析
      解:(1)方程|f(x)|=g(x),即|x2-1|=a|x-1|,变形得|x-1|(|x+1|-a)=0,
      显然,x=1已是该方程的根,从而欲原方程只有一解,即要求方程|x+1|=a,
      有且仅有一个等于1的解或无解,
      由此得a<0.
      (2)不等式f(x)≥g(x)对x∈R恒成立,即(x
      2-1)≥a|x-1|(*)对x∈R恒成立,
      ①当x=1时,(*)显然成立,此时a∈R;
      ②当x≠1时,(*)可变形为a≤
      x2-1
      |x-1|
      ,令φ(x)=
      x2-1
      |x-1|
      =
      {
      x+1,(x>1)
      -(x+1),(x<1)

      因为当x>1时,φ(x)>2,当x<1时,φ(x)>-2,
      所以φ(x)>-2,故此时a≤-2.
      综合①②,得所求实数a的取值范围是a≤-2.
      (3)因为h(x)=|f(x)|+g(x)=|x
      2-1|+a|x-1|=
      {
      x2+ax-a-1,(x≥1)
      -x2-ax+a+1,(-1≤x<1)
      x2-ax+a-1,(x<-1)
      (10分)
      a
      2
      >1,即a>2时,结合图形可知h(x)在[-2,1]上递减,在[1,2]上递增,
      且h(-2)=3a+3,h(2)=a+3,经比较,此时h(x)在[-2,2]上的最大值为3a+3.
      当0≤
      a
      2
      ≤1,即0≤a≤2时,结合图形可知h(x)在[-2,-1],[-
      a
      2
      ,1]上递减,
      在[-1,-
      a
      2
      ],[1,2]上递增,且h(-2)=3a+3,h(2)=a+3,h(-
      a
      2
      )=
      a2
      4
      +a+1,
      经比较,知此时h(x)在[-2,2]上的最大值为3a+3.
      当-1≤
      a
      2
      <0,即-2≤a<0时,结合图形可知h(x)在[-2,-1],[-
      a
      2
      ,1]上递减,
      在[-1,-
      a
      2
      ],[1,2]上递增,且h(-2)=3a+3,h(2)=a+3,h(-
      a
      2
      )=
      a2
      4
      +a+1,
      经比较,知此时h(x)在[-2,2]上的最大值为a+3.
      当-
      3
      2
      a
      2
      <-1,即-3≤a<-2时,结合图形可知h(x)在[-2,
      a
      2
      ],[1,-
      a
      2
      ]上递减,
      在[
      a
      2
      ,1],[-
      a
      2
      ,2]上递增,且h(-2)=3a+3<0,h(2)=a+3≥0,
      经比较,知此时h(x)在[-2,2]上的最大值为a+3.
      a
      2
      <-
      3
      2
      ,即a<-3时,结合图形可知h(x)在[-2,1]上递减,在[1,2]上递增,
      故此时h(x)在[-2,2]上的最大值为h(1)=0.
      综上所述,当a≥0时,h(x)在[-2,2]上的最大值为3a+3;
      当-3≤a<0时,h(x)在[-2,2]上的最大值为a+3;
      当a<-3时,h(x)在[-2,2]上的最大值为0.(14分)

    函数的零点与方程根的关系相关试题

    MBTS ©2010-2016 edu.why8.cn