试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
函数f(x)=ax2+bx+c(a≠0)的图象关于直线x=-b2a对称.据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是( )试题及答案-单选题-云返教育
试题详情
函数f(x)=ax
2
+bx+c(a≠0)的图象关于直线x=-
b
2a
对称.据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程m[f(x)]
2
+nf(x)+p=0的解集都不可能是( )
试题解答
D
解:∵f(x)=ax
2
+bx+c的对称轴为直线x=-
b
2a
令设方程m[f(x)]
2
+nf(x)+p=0的解为f
1
(x),f
2
(x)
则必有f
1
(x)=y
1
=ax
2
+bx+c,f
2
(x)=y
2
=ax
2
+bx+c
那么从图象上看,y=y
1
,y=y
2
是一条平行于x轴的直线
它们与f(x)有交点
由于对称性,则方程y
1
=ax
2
+bx+c的两个解x
1
,x
2
要关于直线x=-
b
2a
对称
也就是说x
1
+x
2
=-
b
a
同理方程y
2
=ax
2
+bx+c的两个解x
3
,x
4
也要关于直线x=-
b
2a
对称
那就得到x
3
+x
4
=-
b
a
,
在C中,可以找到对称轴直线x=2.5,
也就是1,4为一个方程的解,2,3为一个方程的解
所以得到的解的集合可以是{1,2,3,4}
而在D中,{1,4,16,64}
找不到这样的组合使得对称轴一致,
也就是说无论怎么分组,
都没办法使得其中两个的和等于另外两个的和
故答案D不可能
故选D.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是 .?
在函数f(x)=ax2+bx+c中,若a,b,c成等比数列且f(0)=-4,则f(x)有最 值(填“大”或“小”),且该值为 .?
设函数f(x)=x2+x+12的定义域是{n,n+1}(n是自然数),那么在f(x)的值域中共有 个整数.?
设a为实数,函数f(x)=2x2+(x-a)|x-a|.(1)若f(0)≥1,求a的取值范围;(2)求f(x)的最小值;(3)设函数h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®