试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知二次函数f(x)=x2+2(m-2)x+m-m2.(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.试题及答案-单选题-云返教育
试题详情
已知二次函数f(x)=x
2
+2(m-2)x+m-m
2
.
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.
试题解答
见解析
解:(1)∵二次函数f(x)=x
2
+2(m-2)x+m-m
2
的图象过原点,且f(2)=0,
∴
{
-m
2
+m=0
2
2
+2×2(m-2)+m-m
2
=0
,
解得
{
m=1或0
m=1或4
故当函数的图象经过原点且满足f(2)=0时,m为1;
(2)由于函数在区间[2,+∞)上为增函数,且函数的对称轴为x=-
2(m-2)
2
=-(m-2)
所以-(m-2)≤2,解之得到m≥0
则m的取值范围是:m≥0
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知方程3x2-6(m-1)x+m2+1=0的两个虚根为α,β,且|α|+|β|=2,求实数m的值.?
已知二次函数f(x)=ax2+bx+c,a,b,c为实数,且当|x|≤1时,恒有|f(x)|≤1;(I) 证明:|c|≤1;(II)证明:|a|≤2;(III)若g(x)=λax+b(λ>1),求证:当|x|≤1时,|g(x)|≤2λ.?
设f(x)=3ax2-2bx+c,若a-b+c=0,f(0)>0,f(1)>0.(1)求证:方程f(x)=0在区间(0,1)内有两个不等的实数根;(2)若a,b,c都为正整数,求a+b+c的最小值.?
已知二次函数f(x)=ax2+bx+c.(Ⅰ)若a>0且bc≠0,f(0)=-1,|f(-1)|=|f(1)|=1,试求f(x)的解析式;(Ⅱ)若对x1、x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=12[f(x1)+f(x2)]有两个不等实根,证明必有一实根属于(x1,x2).?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®