试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=ax4+bx3+cx2+dx+e(其中a、b、c、d、x∈R)为偶函数,它的图象过点A(0,-1),且在x=1处的切线方程为2x+y-2=0.(1)求函数f(x)的表达式;(2)若对任意x∈R,不等式f(x)≤t(x2+1)总成立,求实数t的取值范围.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=ax
4
+bx
3
+cx
2
+dx+e(其中a、b、c、d、x∈R)为偶函数,它的图象过点A(0,-1),且在x=1处的切线方程为2x+y-2=0.
(1)求函数f(x)的表达式;
(2)若对任意x∈R,不等式f(x)≤t(x
2
+1)总成立,求实数t的取值范围.
试题解答
见解析
解:(1)∵f(x)是偶函数,∴f(-x)=f(x)恒成立.
即a(-x)
4
+b(-x)
3
+c(-x)
2
+d(-x)+e=ax
4
+bx
3
+cx
2
+dx+e恒成立,
∴b=0,d=0,即f(x)=ax
4
+cx
2
+e.
又由图象过点A(0,-1),可知f(0)=-1,即e=-1.
又f′(x)=4ax
3
+2cx,由题意知函数y=f(x)在点(1,0)的切线斜率为-2,
故f′(1)=-2且f(1)=0.
∴4a+2c=-2且a+c-1=0.可得a=-2,c=3.
∴f(x)=-2x
4
+3x
2
-1.
(2)由f(x)≤t(x
2
+1)恒成立,且x
2
+1恒大于0,
可得
-2x
4
+3x
2
-1
x
2
+1
≤t恒成立.
令g(x)=
-2x
4
+3x
2
-1
x
2
+1
,设x
2
+1=m,则m≥1,
∴g(x)=
-2x
4
+3x
2
-1
x
2
+1
=
-2m
2
+7m-6
m
=7-2(m+
3
m
)≤7-4
√
m?
3
m
=7-4
√
3
(当且仅当m=
√
3
时,“=”号成立).
∴g(x)的最大值为7-4
√
3
,
故实数t的取值范围是[7-4
√
3
,+∞).
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数f(x)=x2+2x+ax,x∈[1,+∞).(1)当a=12时,判断并证明函数f(x)在[1,+∞)上的单调性;(2)如果对任意x∈[1,+∞),有f(x)>0恒成立,求实数a的取值范围.?
已知:当x∈R时,不等式x2-4ax+2a+6≥0恒成立.(1)求a的取值范围;(2)在(1)的条件下,求函数f(a)=-a2+2a+3的最值.?
已知函数f(ax)=x,g(x)=2loga(2x+t-2),其中a>0且a≠1,t∈R.(1)求函数y=f(x)的解析式,并指出其定义域;(2)若t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2,求实数a的值;(3)已知0<a<1,当x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.?
已知函数f(x)=x2-2ax-(2a+2)(Ⅰ)解关于x的不等式f(x)>x;(Ⅱ)若f(x)+3≥0在区间(-1,+∞)上恒成立,求实数a的取值范围.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®