试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
定义在R上的函数f(x)满足f(x)=f(x+2) 当x∈[1,3]时,f(x)=2-|x-2|,则下列不等式一定成立的是( )试题及答案-单选题-云返教育
试题详情
定义在R上的函数f(x)满足f(x)=f(x+2) 当x∈[1,3]时,f(x)=2-|x-2|,则下列不等式一定成立的是( )
试题解答
B
解:x∈[1,2]时,f(x)=x,故函数f(x)在[1,2]上是增函数,
x∈(2,3]时,f(x)=4-x,故函数f(x)在[2,3]上是减函数,
又定义在R上的f(x)满足f(x)=f(x+2),故函数的周期是2
所以函数f(x)在(-1,0)上是增函数,在(0,1)上是减函数,
观察四个选项:A中sin
π
6
<cos
π
6
<1,故A不对;
B选项中0<cos1<sin1<1,故B为真命题;
C选项中 f(cos
2π
3
)=f(-
1
2
)=f(
3
2
)=
3
2
,f(sin
2π
3
)=f(
√
3
2
)=f(2+
√
3
2
)=2-
√
3
2
,故C为假命题;
D选项中 f(cos2)=2-cos2>2>f(sin2)=2-sin2
综上,选项B是正确的.
故选B.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
下列说法中:①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>113;③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;④对于函数f(x)=x-1x+1,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.正确的个数为( )?
设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=(12)x-1,则在区间(-2,6]内关于x的方程f(x)-log2(x+2)=0的零点的个数是( )?
设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2010(x)=( )?
给出下列函数:(1)y=sinx2,(2)y=|sinx|,(3)y=-tanx,(4)y=sinx,(5)y=-cos2x.其中在区间(0,π2)上为增函数且以π为周期的函数是( )?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®