见解析
解:(1)证明:依题意 令x=y=0得f(0)=0,
令y=-x得 f(0)=f(x)+f(-x),
∴f(-x)=-f(x),
∴f(x)是奇函数;
(2)有最大值4,最小值-4.理由如下:
设-2≤x1<x2≤2,则x1-x2<0,有已知可得f(x1-x2)<0
∵f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)<0
∴f(x1)<f(x2),
∴f(x)在区间[-2,2]上是增函数.
又∵f(-2)=2f(-1)=-4,f(2)=-f(-2)=4
∴当-2≤x≤2时,f(x)max=f(2)=4,f(x)min=f(-2)=-4.