试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.当α= 度时,点P到CD的距离最小,最小值为 .探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 度,此时点N到CD的距离是 .探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)试题及答案-填空题-云返教育
试题详情
如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.
当α=
度时,点P到CD的距离最小,最小值为
.
探究一
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=
度,此时点N到CD的距离是
.
探究二
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数椐:sin49°=
3
4
,cos41°=
3
4
,tan37°=
3
4
.)
试题解答
90:2:30:2
解:思考:根据两平行线之间垂线段最短,直接得出答案,当α=90度时,点P到CD的距离最小,
∵MN=8,
∴OP=4,
∴点P到CD的距离最小值为:6-4=2.
故答案为:90,2;
探究一:∵以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2
∵MN=8,MO=4,OY=4,
∴UO=2,
∴得到最大旋转角∠BMO=30度,此时点N到CD的距离是 2;
探究二
(1)∵α=60°,
∴△MOP是等边三角形,
∴MO=MP=4,
∴PM⊥AB时,点P到AB的最大距离是4,
由已知得出M与P的距离为4,
从而点P到CD的最小距离为6-4=2,
当扇形MOP在AB,CD之间旋转到不能再转时,弧MP与AB相切,
此时旋转角最大,∠BMO的最大值为90°;
(2)如图3,由探究一可知,点P是弧MP与CD的切点时,α最大,即OP⊥CD,此时延长PO交AB于点H,α最大值为∠OMH+∠OHM=30°+90°=120°,
如图4,当点P在CD上且与AB距离最小时,MP⊥CD,α达到最小,
连接MP,作HO⊥MP于点H,由垂径定理,得出MH=3,在Rt△MOH中,MO=4
∴sin∠MOH=
MH
OM
=
3
4
,
∴∠MOH=49°,
∵α=2∠MOH,
∴α最小为98°,
∴α的取值范围为:98°≤α≤120°.
标签
九年级下
浙教版
填空题
初学
数学
直线与圆的位置关系
相关试题
在Rt△ABC中,∠C=90°,AC=12cm,BC=16cm,以点C为圆心,r为半径的圆和AB有怎样的位置关系?(1)r=9cm.(2)r=10cm.(3)r=9.6cm.?
如图,东海中某小岛上有一灯塔A,灯塔附近方圆25海里范围内有暗礁.一艘渔船在O处测得灯塔在其北偏西60°方向,距离灯塔60海里.若渔船一直向正西方向航行,是否有触礁的危险??
如图所示,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点B为圆心,√2长为半径的圆与直线AC,EF的位置关系分别是多少??
如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)若以P,F,E为顶点的三角形也与△ABE相似,试求x的值;(3)试求当x取何值时,以D为圆心,DP为半径的⊙D与线段AE只有一个公共点.?
已知圆的半径是5cm,如果圆心到直线的距离是5cm,那么直线和圆的位置关系是( )?
(2011?宁波)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现( )?
在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )?
已知⊙O的面积为9πcm2,若点0到直线l的距离为πcm,则直线l与⊙O的位置关系是( )?
(2011?东营)如图,直线y=√33x+√3与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P的个数是( )?
如果一个圆的半径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是( )?
第1章 解直角三角形
1.1 锐角三角函数
互余两角三角函数的关系
锐角三角函数的定义
特殊角的三角函数值
同角三角函数的关系
第2章 直线与圆的位置关系
2.1 直线与圆的位置关系
切割线定理
切线长定理
切线的判定
切线的判定与性质
切线的性质
弦切角定理
直线与圆的位置关系
第3章 投影与三视图
3.1 投影
平行投影
中心投影
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®