试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
(2014?吴中区一模)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED:DO=3:1,OA=9,求:①AE的长;②tanB的值.试题及答案-解答题-云返教育
试题详情
(2014?吴中区一模)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.
(1)求证:AE与⊙O相切;
(2)连接BD,若ED:DO=3:1,OA=9,求:
①AE的长;
②tanB的值.
试题解答
见解析
解:(1)连接OC,
∵OD⊥AC,OC=OA,
∴∠AOD=∠COD.
在△AOE和△COE中
{
OA=O C
∠AOE=∠COE
OE=OE
∴Rt△AOE≌Rt△COE(SAS),
∴∠EAO=∠ECO.
又∵EC是⊙O的切线,
∴∠ECO=90°.
∴∠EAO=90°.
∴AE与⊙O相切;
(2)①设DO=t,则DE=3t,EO=4t,
∵
AO
DO
=
EO
AO
,即
9
t
=
4t
9
,
∴t=
9
2
,即EO=18.
∴AE=
√
EO
2
-AO
2
=
√
18
2
-9
2
=9
√
3
;
②延长BD交AE于F,过O作OG∥AE交BD于G,
∵OG∥AE,
∴∠FED=∠GOD.
又∵∠EDF=∠ODG,
∴△OGD∽△EFD.
EF
OG
=
ED
DO
=
3
1
,即EF=3GO.
又∵O是AB的中点,
∴AF=2GO.
∴AE=AF+FE=5GO.
∴5GO=9
√
3
,
∴GO=
9
√
3
5
.
∴AF=
18
√
3
5
.
∴tanB=
AF
AB
=
√
3
5
.
标签
九年级下
浙教版
解答题
初学
数学
切线的判定与性质
相关试题
(2014?大兴区一模)已知:如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD,作BE∥OD交⊙O于点E,联结DE并延长交BN于点C.(1)求证:DC是⊙O的切线;(2)若AD=l,BC=4,求直径AB的长.?
(2014?武义县模拟)如图,AB是⊙O的直径,AC是⊙O的切线,在⊙O上取点D,连接CD,使得AC=CD,延长CD交直线AB于点E.(1)求证:CD是⊙O的切线.(2)若AC=2√3,AE=6.①求⊙O的半径.②点M是优弧⌒DAB上的一个动点(不与B,D重合),求MD,MB及⌒BD围成的阴影部分面积的最大值.?
如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ADB∽△OBC;(2)连结CD,试说明CD是⊙O的切线;(3)若AB=2,BC=√2,求AD的长.(结果保留根号)?
(2014?中山模拟)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)?
已知圆的半径是5cm,如果圆心到直线的距离是5cm,那么直线和圆的位置关系是( )?
(2011?宁波)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现( )?
在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )?
已知⊙O的面积为9πcm2,若点0到直线l的距离为πcm,则直线l与⊙O的位置关系是( )?
(2011?东营)如图,直线y=√33x+√3与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P的个数是( )?
如果一个圆的半径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是( )?
第1章 解直角三角形
1.1 锐角三角函数
互余两角三角函数的关系
锐角三角函数的定义
特殊角的三角函数值
同角三角函数的关系
第2章 直线与圆的位置关系
2.1 直线与圆的位置关系
切割线定理
切线长定理
切线的判定
切线的判定与性质
切线的性质
弦切角定理
直线与圆的位置关系
第3章 投影与三视图
3.1 投影
平行投影
中心投影
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®