试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
(2014?中山模拟)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)试题及答案-解答题-云返教育
试题详情
(2014?中山模拟)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)求证:∠C=2∠DBE;
(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)
试题解答
见解析
(1)证明:连接OD,
∵BC是⊙O的切线,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,即OD⊥CD,
∵点D在⊙O上,
∴CD为⊙O的切线;
(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,
由(1)得:OD⊥EC于点D,
∴∠E+∠C=∠E+∠DOE=90°,
∴∠C=∠DOE=2∠DBE;
(3)解:作OF⊥DB于点F,连接AD,
由EA=AO可得:AD是Rt△ODE斜边的中线,
∴AD=AO=OD,
∴∠DOA=60°,
∴∠OBD=30°,
又∵OB=AO=2,OF⊥BD,
∴OF=1,BF=
√
3
,
∴BD=2BF=2
√
3
,∠BOD=180°-∠DOA=120°,
∴S
阴影
=S
扇形OBD
-S
△BOD
=
120π×2
2
360
1
2
×2
√
3
×1=
4π
3
-
√
3
.
标签
九年级下
浙教版
解答题
初学
数学
切线的判定与性质
相关试题
(2011?宝应县模拟)已知:△ABC内接于⊙O,过点B作直线EF,AB为非直径的弦,且∠CBF=∠A.(1)求证:EF是⊙O的切线;(2)若∠A=30°,BC=2,连接OC并延长交EF于点M,求由弧BC、线段BM和CM所围成的图形的面积.?
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求∠P的度数;(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.?
(2013?雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)?
(2013?钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=23.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 解直角三角形
1.1 锐角三角函数
互余两角三角函数的关系
锐角三角函数的定义
特殊角的三角函数值
同角三角函数的关系
第2章 直线与圆的位置关系
2.1 直线与圆的位置关系
切割线定理
切线长定理
切线的判定
切线的判定与性质
切线的性质
弦切角定理
直线与圆的位置关系
第3章 投影与三视图
3.1 投影
平行投影
中心投影
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®