试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=loga(x+1),g???x)=loga(1-x)(a>0,且a≠1).(Ⅰ)求函数f(x)+g(x)的定义域;(Ⅱ)判断函数f(x)+g(x)的奇偶性,并说明理由;(Ⅲ)求使f(x)+g(x)<0成立的x的集合.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=log
a
(x+1),g???x)=log
a
(1-x)(a>0,且a≠1).
(Ⅰ)求函数f(x)+g(x)的定义域;
(Ⅱ)判断函数f(x)+g(x)的奇偶性,并说明理由;
(Ⅲ)求使f(x)+g(x)<0成立的x的集合.
试题解答
见解析
解:(Ⅰ)由题意可得函数f(x)+g(x)=log
a
(x+1)+log
a
(1-x)=log
a
(x+1)(1-x),
由
{
x+1>0
1-x>0
解得-1<x<1,故函数的定义域为(-1,1???.
(Ⅱ)由于函数f(x)+g(x)=log
a
(x+1)(1-x)的定义域关于原点对称,
且满足f(-x)+g(-x)=log
a
(-x+1)(1+x)=f(x)+g(x),
故f(x)+g(x)为偶函数.
(Ⅲ)f(x)+g(x)<0 等价于log
a
(-x+1)(1+x)<0.
当a>1时,f(x)+g(x)<0,等价于 0<(-x+1)(1+x)<1,
等价于
{
(-x+1)(1+x)<1
(-x+1)(1+x)>0
,解得-1<x<0,或 0<x<1,
即使f(x)+g(x)<0成立的x的集合为(-1,0)∪(0,1).
当 0<a<1时,f(x)+g(x)<0 等价于(-x+1)(1+x)>1,
化简可得x
2
<0,故x不存在,
即使f(x)+g(x)<0成立的x的集合为?.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
判断下列函数的奇偶性:(1)f(x)=3x-4x-2;(2)f(x)=x4+4x2-4.?
证明:函数 f(x)=x2-1是偶函数,且在[0,+∞)上是增加的.?
已知函数f(x)=|x|(x-a),a为实数.(1)当a=1时,判断函数f(x)的奇偶性,并说明理由;(2)当a≤0时,指出函数f(x)的单调区间(不要过程);(3)是否存在实数a(a<0),使得f(x)在闭区间[-1,12]上的最大值为2.若存在,求出a的值;若不存在,请说明理由.?
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.(1)求证:f(x)-1为奇函数;(2)求证:f(x)是R上的增函数;(3)若f(4)=5,解不等式f(3m2-m-2)<3.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®