试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都???f(a)+f(b)a+b>0.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x-2?3x)+f(2?9x-k)>0对任意x∈[0,+∞)恒成立,求实数k的取值范围.试题及答案-单选题-云返教育
试题详情
设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都???
f(a)+f(b)
a+b
>0.
(1)若a>b,试比较f(a)与f(b)的大小关系;
(2)若f(9
x
-2?3
x
)+f(2?9
x
-k)>0对任意x∈[0,+∞)恒成立,求实数k的取值范围.
试题解答
见解析
解:(1)∵对任意a,b,当a+b≠0,都有
f(a)+f(b)
a+b
>0.
∴
f(a)+f(-b)
a-b
>0,
∵a>b,∴a-b>0,
∴f(a)+f(-b)>0,
∵f(x)是定义在R上的奇函数,
∴f(-b)=-f(b),
∴f(a)-f(b)>0,
∴f(a)>f(b);
(2)由(1)知f(x)在R上是单调递增函数,
又f(9
x
-2?3
x
)+f(2?9
x
-k)>0,得f(9
x
-2?3
x
)>-f(2?9
x
-k)=f(k-2?9
x
),
故9
x
-2?3
x
>k-2?9
x
,即k<3?9
x
-2?3
x
,
令t=3
x
,则t≥1,
所以k<3t
2
-2t,而3t
2
-2t=3(t-
1
3
)
2
-
1
3
在[1,+∞)上递增,所以3t
2
-2t≥3-2=1,
所以k<1,即所求实数k的范围为k<1.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
若f(x)是偶函数,且f(x)在区间[0,+∞)上是单调增函数,且f(-2)=0,则不等式(x-2)f(x-1)>0的解集是 .?
函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25.(1)确定函数的解析式;(2)证明函数f(x)在(-1,1)上是增函数;(3)解不等式f(t-1)+f(t)<0.?
设f(x)是定义在R上的奇函数,当x≤0时,f(x)=x2 若对任意的x∈[t,t+2]不等式f(x)≤4f(x+t)恒成立,则实数t的最大值是 .?
已知定义域为R的函数f(x)=2x-1a+2x+1是奇函数.(1)求a的值;(2)求证:f(x)在R上是增函数;(3)若对任意的t∈R,不等式f(mt2+1)+f(1-mt)>0恒成立,求实数m的取值范围.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®