• 设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2010(x)= .试题及答案-单选题-云返教育

    • 试题详情

      设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2010(x)=         

      试题解答


      -sinx
      解:∵f1(x)=(sinx)′=cosx,
      f
      2(x)=(cosx)′=-sinx,
      f
      3(x)=(-sinx)′=-cosx,
      f
      4(x)=(-cosx)′=sinx,
      f
      5(x)=(sinx)′=f1(x),f6(x)=f2(x),.
      ∴f
      n+4(x)=fn(x),即周期T为4.
      ∴f
      2010(x)=f2(x)=-sinx.
      故答案为:-sinx
    MBTS ©2010-2016 edu.why8.cn