• 定义:x∈R,且当m-13<x≤m+23(m∈Z)时,φ(x)=m;令函数f(x)=|x-φ(x)|,有以下三个命题:①f(x)是最小正周期为1的周期函数;②f(x)的值域为[0,1];③f(x)在(k,k+23]上是增函数(k∈Z)其中真命题的序号是 .试题及答案-单选题-云返教育

    • 试题详情

      定义:x∈R,且当m-
      1
      3
      <x≤m+
      2
      3
      (m∈Z)时,φ(x)=m;令函数f(x)=|x-φ(x)|,有以下三个命题:
      ①f(x)是最小正周期为1的周期函数;
      ②f(x)的值域为[0,1];
      ③f(x)在(k,k+
      2
      3
      ]上是增函数(k∈Z)
      其中真命题的序号是
               

      试题解答


      ①③
      解:由题意x-φ(x)=x-m,
      ∴f(x)=|x-φ(x)|=|x-m|,
      m=0时,-
      1
      3
      <x≤
      2
      3
      ,f(x)=|x|,
      m=1时,1-
      1
      3
      <x≤1+
      2
      3
      ,f(x)=|x-1|,
      m=2时,2-
      1
      3
      <x≤2+
      2
      3
      ,f(x)=|x-2|,
      图象如下图所示:

      由图象可知正确命题为①③.
    MBTS ©2010-2016 edu.why8.cn