试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
定义在R上的单调增函数f(x),对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)判断函数f(x)的奇偶性;(2)若f(k?3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.试题及答案-单选题-云返教育
试题详情
定义在R上的单调增函数f(x),对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)判断函数f(x)的奇偶性;
(2)若f(k?3
x
)+f(3
x
-9
x
-2)<0对任意x∈R恒成立,求实数k的取值范围.
试题解答
见解析
(1)证明:令x=y=0,代入f(x+y)=f(x)+f(y)(x,y∈R),得f(0+0)=f(0)+f(0),即 f(0)=0.
令y=-x,代入f(x+y)=f(x)+f(y)(x,y∈R),得 f(x-x)=f(x)+f(-x),
又f(0)=0,则有0=f(x)+f(-x).
即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.--------------(4分)
(2)解:f(x)在R上是单调增函数,又由(1)知f(x)是奇函数.
∵f(k?3
x
)<-f(3
x
-9
x
-2)=f(-3
x
+9
x
+2),
∴k?3
x
<-3
x
+9
x
+2,
∴3
2x
-(1+k)?3
x
+2>0对任意x∈R成立.
令t=3
x
>0,问题等价于t
2
-(1+k)t+2>0对任意t>0恒成立.--------------------(6分)
令g(t)=t
2
-(1+k)t+2,其对称轴为x=
1+k
2
当
1+k
2
<0,即k<-1时,f(0)>2,符合题意;
当
1+k
2
≥0,即k≥-1时,则△=(1+k)
2
-4×2<0,∴-1≤k<-1+2
√
2
综上,k<-1+2
√
2
--------------------------(12分)
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知g(x),h(x???分别是定义在R上的偶函数和奇函数,且g(x)+h(x)=ex.(1)求g(x),h(x)的解析式;(2)解不等式h(x2+2x)+h(x-4)>0;(3)若对任意x∈[ln2,ln3]使得不等式g(2x)-ah(x)≥0恒成立,求实数a的取值范围.?
已知函数f(x)=x3+2x,若f(cos2θ-2m)+f(2msinθ-2)<0对θ∈R恒成立,求实数m的取值范围.?
已知函数f(x)=lg(x+1),g(x)=lg(1-x).(1)求函数f(x)-g(x)的定义域;(2)判断函数f(x)-g(x)的奇偶性,并说明理由;(3)判断函数f(x)-g(x)在定义域上的单调性,并证明你的结论.?
已知f(x)=log(4x+1)4+kx是偶函数,其中x∈R,且k为常数.(1)求k的值;(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®